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Abstract

Random forest has been widely recognized as one of the most powerful learning-based predictors 

in literature, with a broad range of applications in medical imaging. Notable efforts have been 

focused on enhancing the algorithm in multiple facets. In this paper, we present an original 

concept of multi-source information gain that escapes from the conventional notion inherent to 

random forest. We propose the idea of characterizing information gain in the training process by 

utilizing multiple beneficial sources of information, instead of the sole governing of prediction 
targets as conventionally known. We suggest the use of location and input image patches as the 

secondary sources of information for guiding the splitting process in random forest, and 

experiment on the challenging task of predicting CT images from MRI data. The experimentation 

is thoroughly analyzed in two datasets, i.e., human brain and prostate, with its performance further 

validated with the integration of auto-context model. Results prove that the multi-source 
information gain concept effectively helps better guide the training process with consistent 

improvement in prediction accuracy.

1 Introduction

Since introduced by Breiman [1] in 2001, random forest has become one of the most 

powerful learning-based predictors with state-of-the-art performance on a broad range of 

applications, ranging from detection, classification, to segmentation, etc.

With its increasing success, random forest has attracted growing efforts in improving the 

method from various facets. Menze et al. [2] proposed a supervised approach to define the 

optimal “oblique” split direction on the features, instead of the popular orthogonal split in 

the training process. This approach adapts more effectively to the nature of data and 

dramatically reduces the complexity of decision trees. Marin [3] et al. also adopted this idea 

with the use of Support Vector Machine in learning the splitting direction. While in [4], 

Robnik-Šikonja provided insight that using multiple attribute evaluation measures in 
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different trees for split selection would improve the performance by decreasing the 

correlation among the trees. The author also showed significant improvement in deriving 

final prediction result by weighting the trees based on their performance on similar inputs. 

Recently, the most notable advancement of random forest is the introduction of structured 

random forest, which extends random forest from predicting scalar outputs to directly 

predicting structured outputs. Structured random forest can better preserve the neighborhood 

information in the structured outputs as a whole, which has shown preeminent performance 

[5] [6].

Although many enhancements have been proposed for random forest, all of the methods 

follow the same strategy in growing trees based solely on minimizing the variety of the 

prediction targets in each child node. The purity of prediction targets or labels is unarguably 

the most important factor in choosing the splits on data. However, prediction targets are not 

the only source of information that is beneficial to guide the process. In this paper, we, for 

the first time, explore the use of multiple sources of information as the splitting criteria in 

random forest. Specifically, we devise the general model for multi-source information gain, 

and suggest the use of location and input image patches (built upon the success of structured 

random forest) as other secondary sources of information to guide the splitting process. The 

method is then analyzed through the challenging problem of predicting computed 

tomography (CT) image from magnetic resonance (MR) image in two datasets, human brain 

and prostate region. The performance is also further thoroughly examined and validated with 

the integration of auto-context model. Results provide insights into the method as well as 

show that significant improvement could be gained by the proposed approach.

2 Random Forest

We first review the classic random forest, followed by structured random forest. They are the 

foundation for extending to multi-source information gain in Section 3.

2.1 Classic Random Forest

Random forest comprises of multiple decision trees. At each internal node of a tree, a feature 

is chosen to split the incoming training samples to maximize the information gain. A 

training sample consists of an input feature vector and its output target. Let u ∈ U ⊂ ℝq be 

an input feature vector, and ν ∈ V ⊂ ℤ be its corresponding prediction target in the 

classification problem. For a set of samples Sj ⊂ U × V arriving at node j, the information 

gain achieved by choosing the k-th feature is computed by:

I j
k = H S j −

S j, L
k

S j
H S j, L

k −
S j, R

k

S j
H S j, R

k , (1)

H S = − ∑ν pνlog pν , (2)
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where L and R denote the left and right child nodes, S j, L
k = u, ν ∈ S j uk < θ j

k , 

S j, R
k = S j\S j, L

k , uk is the k-th feature in u, θ j
k is the splitting threshold chosen to maximize the 

information gain I j
k, and |·| is the cardinality of the set. H(S) denotes the entropy of target 

values in S, with pν the fraction of elements in S having value ν. For regression problem (V 
⊂ ℝ), the entropy is replaced by variance as follows:

H S = ∑ν pν ν − ν 2, (3)

ν = ∑ν pνν, (4)

2.2 Structured Random Forest

In the classic random forest, the output space is either a class label for the case of 

classification, or a real value for the case of regression. Recently, a few pioneering works [5]

[6] advanced random forest into structured random forest, which directly predicts a 

structured patch instead of a single value, and achieved preeminent performance. The 

difference between structured random forest and classic random forest is illustrated in Fig. 1, 

using an example of predicting CT image from MRI data. Structured random forest helps 

preserve the neighborhood information in the predicted structured patch and further reduce 

the expected number of decision trees since a voxel now receives information from multiple 

neighboring patches.

When extending to structured random forest, the main issue is how to characterize the 

entropy of the structured patches. That is, how to efficiently capture the similarity of 

different target patches. One naïve way is formulating the similarity based on individual 

voxels inside the patches. However, the computation is highly expensive and the method is 

too sensitive to individual voxel changes rather than high-level patch structure. A more 

effective way is to find a mapping that can effectively capture the information from each 

image patch. In this paper, we characterize the image patches by principal component 

analysis (PCA), i.e., the mapped coefficients of ν represent its first d PCA coefficients. This 

mapping has the advantage of being computationally efficient while effectively deriving the 

most significant information in each target patch. Suppose the prediction targets now are ν ∈ 
V ⊂ ℝg, and w = Π(ν) denotes the mapped coefficients of ν, where w ∈ ℂ ⊂ ℝd, d < g. 
Then, the entropy H(S) from Eqs. (3) and (4) can be computed as:

H S = ∑
w

pw w − w 2
2

(5)
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w = ∑
w

pww (6)

By using structured random forest, the predicted neighboring patches can be fused, i.e., by 

averaging, to reconstruct a final predicted image.

3 Multi-source Information Gain

In random forest, the splitting maximizes the information gain by minimizing the variety of 

prediction targets in each child node (Eqs. 1–6). The rationale of this process is to find the 

best feature and threshold that have the highest discriminative power to categorize the 

samples. That discriminative power is measured solely by the convergence of prediction 

targets, which is intuitive and the prediction targets are unarguably the most important 

information to guide the learning procedure. However, they are not the only source of 

information that is helpful to guide the splitting process. For example, many applications 

hold the spatial constraint, in which certain output patterns usually appear in certain 

locations. In these cases, a split results in the grouping of similar output patterns and is more 

informative and robust in nearby locations, which should also carry higher information gain 

compared to the case of having those output patterns in highly scattered locations. In this 

case, location is another source of information that could contribute to the information gain 

obtained at each split. Therefore, we propose to include multiple indicators in guiding the 

splitting process, and devise the notion of multi-source information gain for this purpose.

Suppose we have N sources of information that we would like to integrate to the final 

information gain. The sources can be of various forms, from discrete labels, real values, or 

structured patches, with their individual entropies to be computed as in Eqs. 2, 3–4, and 5–6, 

respectively. Since the information gain from different sources could have very different 

ranges, we define the information gain ratio for one source as a variant of the information 

gain in Eq. 1 to normalize the gain from different sources:

R j
k =

I j
k

H S j
(7)

where R j
k denotes the information gain ratio obtained from one source by choosing the k-th 

feature to split the samples at node j, I j
k is the information gain as defined in Eq. 1, and H(Sj) 

is the entropy of set Sj. Letting R j
k n  denote the information gain ratio obtained from source 

n ∈ {1, …, N}, we define the multi-source information gain as the weighted combination of 

the information gain ratios from all sources as follows:
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M j
k = ∑

n = 1

N
α n G j

k n (8)

G j
k n =

R j
k n R j

k n ≥ 0

0 R j
k n < 0

(9)

where M j
k denotes the multi-source information gain when choosing the k-th feature to split 

the samples at node j, and α(n) is the weighting factor which indicates the relative 

importance of different sources.

In this paper, we suggest and analyze the use of three different sources of information gain: 

1) the prediction target patches, 2) the location of the samples, and 3) the corresponding 

input image patches. The contribution of location information has been previously 

discussed, while input image patches also can potentially provide helpful information to 

better guide the splitting process. In many problems where there are strong correlations 

between the input and output structures, we could expect that a similarity in input structures 

should also correspond to the similarity in output structures. Thus, information gain from 

input structures could potentially further enhance the confidence of similarity of output 

structures. This is especially helpful with the introduction of structured random forest, where 

the information gain from both input and output can be measured in the corresponding 

structured patches, thus better exploiting their correlation.

4 Experimental Analysis

4.1 Predicting CT Image from MR image

We apply the proposed method to the problem of predicting CT image from corresponding 

MR image. We choose to perform analysis on this problem because it is a challenging 

problem, with complex relationship between CT and MR images, and also location 

information could be exploited. These conditions allow us to best demonstrate the proposed 

multi-source information gain model. This task is highly important in performing 

attenuation correction (AC) for Positron emission tomography (PET) images in the 

PET/MRI system. AC is required to make PET images readily applicable for clinical 

diagnosis, which relies on the attenuation map obtained from CT images. Therefore, 

predicting CT image from MR image is crucial in PET/MRI system. Examples of the MR 

and CT image pairs are shown in Figs. 2–3. As can be seen in the figures, predicting CT 

image from MR image is very challenging, with the complex relationship between two 

modalities. The same range of MR intensity values can correspond to different ranges of CT 

values (Fig. 2), while multiple ranges of MR values can also correspond to the same CT 

value range (Fig. 3).
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4.1.1 Datasets—We experiment on two datasets: 1) The brain data were acquired from 16 

subjects with both MR and CT scans in the Alzheimer’s Disease Neuroimaging Initiative 

data-base (adni.loni.usc.edu). 2) The prostate dataset is our in-house data, which has 22 

subjects, each with the corresponding MR and CT scans.

4.1.2 Training Procedure

Pre-alignment: In order to learn the relationship between MR and CT images, we first need 

to perform the intra-alignment for the MR and CT image pair of each subject [8]. 

Afterwards, in order to utilize the spatial information, we perform inter-subject registration 

[7] to roughly bring all the subjects onto a common space.

Training: We utilize structured random forest to predict CT image from corresponding MR 

image, as discussed in Section 2.2. Different combinations from three sources of information 

gain are experimented: MR patches, target CT patches, and location. The following 

parameters were used - MR input patch size: 15×15×15; CT target patch size: 3×3×3; 

Number of PCA coefficients used in structured random forest: 10; Weighing factors for CT 

patches, MR patches, and locations in the multi-source information gain model are 1, 0.2, 

and 0.2, respectively.

4.1.3 Results—To provide thorough evaluation of the performance using different sources 

of information gain, we experiment on four different configurations: 1) information gain 

from target CT patches alone (CT), 2) from CT and MR patches (CT_MR), 3) from CT 

patches and Locations of the patches (CT_LOC), and 4) from MR, CT patches, and 

Locations of the patches (CT_MR_LOC). Leave-one-out cross validation was performed on 

both datasets using two popular metrics: Peak signal-to-noise ratio (PSNR) and normalized 

mean square error (NMSE). Results are provided in Figs. 6–7, with qualitative samples in 

Figs. 4–5. Following conclusions could be drawn:

• The information gain from location always notably improves the performance in 

both brain and prostate data (CT_LOC versus CT, and CT_MR_LOC versus 

CT_MR). The location information gain helps favoring the grouping of similar 

image patches in nearby locations, making the grouping more robust.

• The information gain from MR patches slightly improves the prediction 

performance in brain dataset, but degrades the prediction in prostate dataset 

(CT_MR versus CT, and CT_MR_LOC versus CT_LOC). One possible reason is 

due to the nature of datasets. In brain data, we have more one-to-multiple 

mappings from MR to CT images, where similar intensities from MR (e.g., air 

and bone) correspond to highly different CT intensities. Thus, the added 

refinement from MR patches helps better differentiate the CT patches. On the 

other hand, in prostate data, there are more multiple-to-one mappings from MR 

to CT images. Thus, the further information gain from MR patches does not 

help, and actually makes the grouping overfitting and leads to more wrong 

predictions.

To validate the confidence in improvement of the multi-source model, we also performed 

statistical tests with the obtained p-values well below 0.05 for both datasets.
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4.2 Integration to Auto-context Model

To perform in-depth analysis of the method, we further experiment the multi-source 

information gain in the second layer of auto-context model (ACM) [9]. ACM utilizes the 

prediction result from the previously learned model as the added contextual information, and 

uses features extracted from this result together with features from the original input image 

to train a new refining model.

We use the best predicted results from the first layer (CT_MR_LOC for brain, CT_LOC for 

prostate data) as the context features to train the second layer random forest. The prediction 

performance of different sources of information gain is provided in Figs. 8–9. We can see 

that although the improvement has been more saturated in the second layer, adding more 

sources of information gain still has the same effect as in the first layer. Specifically, location 

information gain always improves the performance in both datasets, while information gain 

from MR image patches helps advance the prediction in brain dataset, but degrades in 

prostate dataset.

To further provide a complete comparison, we also show the performance of autocontext 

model using the traditional random forest (information gain based solely on CT patches) and 

our multi-source information gain based random forest (CT_MR_LOC for brain, and 

CT_LOC for prostate data). In this experiment, each method uses its own predicted results 
as context features. Results are presented in Figs. 10–11. From this experiment, we can 

clearly see the improvement of the proposed method compared to the traditional one. In both 

datasets, the performance of the multi-source model in the first layer almost reaches the 

result of the traditional model in the second layer.

5 Discussion and Conclusion

In this paper, we proposed the use of multiple sources of information in characterizing the 

information gain in random forest. A general model was proposed and the experimentation 

was carried out for the challenging task of predicting CT images from MRI data. Results 

clearly show that, when using appropriately, the information gain from other contributive 

sources besides the prediction targets consistently improves the prediction performance. This 

is the first time a multi-source information gain concept is proposed with promising results, 

which could open potentials for future shifts into this line of research. In the future, we 

would like to investigate the use of other sources of information gain that could also be taken 

into consideration.
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Fig. 1. 
Illustration of classic random forest and structured random forest. In the classic random 

forest, the input feature vector u derived from MR image patch is used to predict a target 

value ν for a voxel (red point) in the CT image, while, in the structured random forest, the 

same feature vector u is used to predict all values ν in a target CT patch (red rectangle).
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Fig. 2. 
A pair of MR image and corresponding CT image from the same human brain. Example of 

“one-to-multiple” relationship: both air and bone have very low response in MR images, but 

can be highly differentiated in CT images.
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Fig. 3. 
A pair of an MR image and its corresponding CT image around the prostate area. Example 

of “multiple-to-one” relationship: there are many intensity levels in MR image 

corresponding to the same intensity level in CT image (red rectangle).
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Fig. 4. 
Sample result on brain data, using CT_MR_LOC configuration.
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Fig. 5. 
Sample result on prostate data, using CT _LOC configuration.
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Fig. 6. 
Prediction results on brain data.
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Fig. 7. 
Prediction results on prostate data.
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Fig. 8. 
Prediction results of second layer ACM on brain data.
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Fig. 9. 
Prediction results of second layer ACM on prostate data.
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Fig. 10. 
Prediction results on brain data, in different layers of ACM.
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Fig. 11. 
Prediction results on prostate data, in different layers of ACM.
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